
Department of CSE Page 1 of 14

UNIT IV

Testing Strategies: A strategic approach to software testing, test strategies for conventional software,

Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging.

Product metrics: Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics
for source code, Metrics for testing, Metrics for maintenance.

Metrics for Process and Products: Software Measurement, Metrics for software quality.

Testing Strategies

 Software is tested to uncover errors introduced during design and construction. Testing often
accounts for

 More project effort than other s/e activity. Hence it has to be done carefully using a testing strategy.

The strategy is developed by the project manager, software engineers and testing specialists.
Testing is the process of execution of a program with the intention of finding errors Involves 40%
of total project cost

Testing Strategy provides a road map that describes the steps to be conducted as part of testing.
It should incorporate test planning, test case design, test execution and resultant data

collection and execution
Validation refers to a different set of activities that ensures that the software is traceable to the

Customer requirements.
V&V encompasses a wide array of Software Quality Assurance

A strategic Approach for Software testing

Testing is a set of activities that can be planned in advance and conducted systematically. Testing
strategy

Should have the following characteristics:
-- usage of Formal Technical reviews(FTR)
-- Begins at component level and covers entire system
-- Different techniques at different points
-- conducted by developer and test group
-- should include debugging

Software testing is one element of verification and validation.
Verification refers to the set of activities that ensure that software correctly
implements a specific function.
(Ex: Are we building the product right?)

Validation refers to the set of activities that ensure that the software built is
traceable to customer requirements.

(Ex: Are we building the right product ?)

Testing Strategy

Department of CSE Page 2 of 14

Testing can be done by software developer and independent testing group. Testing and
debugging are different activities. Debugging follows testing

Low level tests verifies small code segments. High level tests validate major
system functions against customer requirements

Test Strategies for Conventional Software:

Testing Strategies for Conventional Software can be viewed as a spiral consisting of four
levels of testing:

1) Unit Testing
2)Integration Testing
3)Validation Testing
and

4) System Testing

Spiral Representation of Testing for Conventional Software

Unit Testing begins at the vortex of the spiral and concentrates on each unit of
software in source code.

 It uses testing techniques that exercise specific paths in a component and its control

structure to ensure complete coverage and maximum error detection. It focuses on the internal

processing logic and data structures. Test cases should uncover errors.

Department of CSE Page 3 of 14

Fig: Unit Testing

Boundary testing also should be done as s/w usually fails at its boundaries. Unit
tests can be designed before coding begins or after source code is generated.

Integration testing: In this the focus is on design and construction of the software

architecture. It addresses the issues associated with problems of verification and program

construction by testing inputs and outputs. Though modules function independently

problems may arise because of interfacing. This technique uncovers errors associated with

interfacing. We can use top-down integration wherein modules are integrated by moving

downward through the control hierarchy, beginning with the main control module. The

other strategy is bottom –up which begins construction and testing with atomic modules

which are combined into clusters as we move up the hierarchy. A combined approach called

Sandwich strategy can be used i.e., top- down for higher level modules and bottom-up for

lower level modules.

Department of CSE Page 4 of 14

Validation Testing: Through Validation testing requirements are validated against
s/w constructed. These are high-order tests where validation criteria must be
evaluated to assure that s/w meets all functional, behavioural and performance
requirements. It succeeds when the software functionsin a manner that can be
reasonably expected by the customer.
1)Validation Test

Criteria 2)Configuration

Review 3)Alpha And

Beta Testing

The validation criteria described in SRS form the basis for this testing. Here, Alpha and Beta
testing is performed. Alpha testing is performed at the developers site by end users in a
natural setting and with a controlled environment. Beta testing is conducted at end-user
sites. It is a “live” application and environment is not controlled.
End-user records all problems and reports to developer. Developer then makes

modifications and releases the product.

System Testing: In system testing, s/w and other system elements are tested as a whole.
This is the last high-order testing step which falls in the context of computer system
engineering. Software is combined with other system elements like H/W, People, Database
and the overall functioning is checked by conducting a series of tests. These tests fully
exercise the computer based system. The types of tests are:

1. Recovery testing: Systems must recover from faults and resume processing within a

prespecified time.

It forces the system to fail in a variety of ways and verifies that recovery is properly
performed. Here the Mean Time To Repair (MTTR) is evaluated to see if it is within
acceptable limits.

2. Security Testing: This verifies that protection mechanisms built into a system will protect

it from improper penetrations. Tester plays the role of hacker. In reality given enough

resources and time it is possible to ultimately penetrate any system. The role of system

designer is to make penetration cost more than the value of the information that will be

obtained.

3. Stress testing: It executes a system in a manner that demands resources in abnormal

quantity, frequency or volume and tests the robustness of the system.

4. Performance Testing: This is designed to test the run-time performance of s/w within the

context of an integrated system. They require both h/w and s/w instrumentation.

Testing Tactics:

The goal of testing is to find errors and a good test is one that has a high probability of

finding an error.
A good test is not redundant and it should be neither too simple nor too
complex. Two major categories of software testing

Black box testing: It examines some fundamental aspect of a system, tests whether
each function of product is fully operational.

White box testing: It examines the internal operations of a system and

examines the procedural detail.

Department of CSE Page 5 of 14

Black box testing

This is also called behavioural testing and focuses on the functional requirements of software.
It fully exercises all the functional requirements for a program and finds incorrect or missing
functions,interface errors, database errors etc. This is performed in the later stages in the
testing process. Treatsthe system as black box whose behaviour can be determined by
studying its input and related output Not concerned with the internal. The various testing
methods employed here are:

1) Graph based testing method: Testing begins by creating a graph of important objects and

their relationships

and then devising a series of tests that will cover the graph so that each object and
relationship is exercised and errors are uncovered.

Fig: O-R graph.

2) Equivalence partitioning: This divides the input domain of a program into classes of

data from which test

Cases can be derived. Define test cases that uncover classes of errors so that no. of test
cases are reduced.This is based on equivalence classes which represents a set of valid or
invalid states for inputconditions. Reduces the cost of testing

Example

Input consists of 1 to 10

Then classes are n<1,1<=n<=10,n>10

Choose one valid class with value within the allowed range and two invalid classes
where values are greater than maximum value and smaller than minimum value.

3) Boundary Value analysis

Select input from equivalence classes such that the input lies at the edge of the equivalence
classes. Set of

Object

Link

Department of CSE Page 6 of 14

data lies on the edge or boundary of a class of input data or generates the data that lies at the
boundary of a class of output data. Test cases exercise boundary values to uncover errors at the
boundaries of the input domain.

Example

If 0.0<=x<=1.0

Then test cases are (0.0,1.0) for valid input and (-0.1 and 1.1) for invalid input

4) Orthogonal array Testing

This method is applied to problems in which input domain is relatively small but too large for
exhaustive testing

Example

Three inputs A,B,C each having three values will require 27 test cases. Orthogonal testing will
reduce the number of test case to 9 as shown below

White Box testing

Also called glass box testing. It uses the control structure to derive test cases. It exercises all

independent paths, Involves knowing the internal working of a program, Guarantees that all

independent paths will be exercised at least once .Exercises all logical decisions on their true

and false sides, Executes all loops,Exercises all data structures for their validity. White box

testing techniques

1. Basis path testing
2.Control structure
testing 1.Basis path
testing

Proposed by Tom McCabe. Defines a basic set of execution paths based on
logical complexity of a procedural design. Guarantees to execute every statement in
the program at least once Steps of Basis Path Testing

1. Draw the flow graph from flow chart of the program
2.Calculate the cyclomatic complexity of the resultant flow
graph 3.Prepare test cases that will force execution of each
path

Two methods to compute Cyclomatic complexity number
1.V(G)=E-N+2 where E is number of edges, N is number of
nodes 2.V(G)=Number of regions

The structured constructs used in the flow graph are:

Department of CSE Page 7 of 14

effective
It is not sufficient in

itself 2.Control

Structure testing

This broadens testing coverage and improves quality of testing. It uses the following methods:
a) Condition testing: Exercises the logical conditions contained in a program module.

Focuses on testing each condition in the program to ensure that it does not contain
errors Simple condition
E1<relation operator>E2 Compound condition
simple condition<Boolean operator>simple
condition
Types of errors include operator errors, variable errors, arithmetic expression errors etc.
b) Data flow Testing
This selects test paths according to the locations of definitions and use of variables in
a program Aims to ensure that the definitions of variables and subsequent use is tested
First construct a definition-use graph from the control flow of a program

DEF(definition):definition of a variable on the left-hand side of an assignment statement
USE: Computational use of a variable like read, write or variable on the right hand
of

assignment statement Every DU chain be tested at least once.

c) Loop Testing

This focuses on the validity of loop constructs. Four categories can be defined

1.Simple
loops
2.Nested
loops

Department of CSE Page 8 of 14

3.Concatenated
loops
4.Unstructured
loops

Testing of simple loops
N is the maximum number of allowable passes through the loop

1.Skip the loop entirely
2.Only one pass through the
loop 3.Two passes through
the loop
4.m passes through the loop where
m>N 5.N-1,N,N+1 passes the loop

The Art of Debugging
Debugging occurs as a consequence of successful testing. It is an action that results in
the removal of errors.
It is very much an art.

Fig: Debugging process

Debugging has two outcomes:
- cause will be found and corrected
- cause will not be
found Characteristics of
bugs:
- symptom and cause can be in different locations

Department of CSE Page 9 of 14

- Symptoms may be caused by human error or timing problems

Debugging is an innate human trait. Some are good at it and some are

not.

Debugging Strategies:

The objective of debugging is to find and correct the cause of a software error which is
realized by a combination of systematic evaluation, intuition and luck. Three strategies are
proposed: 1)Brute Force Method.

2)Back Tracking
3)Cause
Elimination

Brute Force: Most common and least efficient method for isolating the cause of a s/w error.

This is applied

when all else fails. Memory dumps are taken, run-time traces are invoked and program

is loaded with output statements. Tries to find the cause from the load of information

Leads to waste of time and effort.

Back tracking: Common debugging approach. Useful for small programs

Beginning at the system where the symptom has been uncovered, the source code is
traced backward until the site of the cause is found. More no. of lines implies no. of paths are
unmanageable.

Cause Elimination: Based on the concept of Binary partitioning. Data related to
error occurenec are organized to isolate potential causes. A “cause hypothesis” is
devised and data is used to prove or disprove it. A list of all possible causes is
developed and tests are conducted to eliminate each

Automated Debugging: This supplements the above approaches with debugging tools
that provide semi-automated support like debugging compilers, dynamic debugging
aids, test casegenerators, mapping tools etc.

Regression Testing: When a new module is added as part of integration testing the software

changes.

This may cause problems with the functions which worked properly before. This testing is

the re-execution of some subset of tests that are already conducted to ensure that

changes have not propagatedunintended side effects. It ensures that changes do not

introduce unintended behaviour or errors. This can be done manually or automated.

Software Quality Conformance to explicitly stated functional andperformance

requirements, explicitly documented development standards, and implicit characteristics

that are expected of

Department of CSE Page 10 of 14

All professionally developed software.

Factors that affect software quality can be categorized in two broad groups:
Factors that can be directly measured (e.g. defects uncovered during testing)
Factors that can be measured only indirectly (e.g. usability or maintainability)

McCall’s quality factors
1.Productoperation Correctness

Reliability

Efficiency

Integrity

Usability

2. Product Revision

Maintainability

Flexibility

3. Product

Transition

Portability

Reusability

Interoperability

ISO 9126 Quality Factors

1. Functionality

2.Reliability

3.Usability

4.Efficiency

5.Maintainability

6.Portability

Product metrics

Product metrics for computer software helps us to assess quality.

Measure Provides a quantitative indication of the extent, amount,

dimension, capacity or size of someattribute of a product or

process Metric(IEEE 93 definition)

Department of CSE Page 11 of 14

A quantitative measure of the degree to which a system, component or process
possess a given attribute Indicator

A metric or a combination of metrics that provide insight into the software process,
a software project or a product itself
Product Metrics for analysis, Design, Test and maintenance

Product metrics for the Analysis model
Function point Metric

First proposed by Albrecht
Measures the functionality delivered by the
system FP computed from the following
parameters
1) Number of external inputs(EIS)

2) Number external outputs(EOS)

Product metrics for the Analysis model

Number of external Inquiries(EQS)

Number of Internal Logical Files(ILF)

Number of external interface

files(EIFS)

Each parameter is classified as simple, average or complex and weights are assigned as follows

Product metrics for the Analysis model

• Information

Domain

Count

Simple

avg

Complex

EIS 3 4 6

EOS 4 5 7

EQS 3 4 6

ILFS 7 10 15

EIFS 5 7 10

FP=Count total *[0.65+0.01*E(Fi)]

Metrics for Design Model

DSQI(Design Structure Quality
Index) US air force has designed
the DSQI
Compute s1 to s7 from data and architectural design

Department of CSE Page 12 of 14

S1:Total number of modules
S2:Number of modules whose correct function depends on the data

input S3:Number of modules whose function depends on prior

processing S4:Number of data base items

S5:Number of unique database

items S6: Number of database

segments

S7:Number of modules with single entry and exit

Calculate D1 to D6 from s1 to s7 as follows:
D1=1 if standard design is followed otherwise

D1=0 D2(module independence)=(1-(s2/s1))
D3(module not depending on prior processing)=(1-
(s3/s1)) D4(Data base size)=(1-(s5/s4))
D5(Database compartmentalization)=(1-
(s6/s4) D6(Module entry/exit
characteristics)=(1-(s7/s1))

DSQI=sigma of WiDi

i=1 to 6,Wi is weight assigned to Di
If sigma of wi is 1 then all weights are equal to 0.167
DSQI of present design be compared with past DSQI. If DSQI is significantly lower than

the average,further design work and review are indicated

METRIC FOR SOURCE CODE

HSS(Halstead Software science)

Primitive measure that may be derived after the code is generated or estimated once design is
complete

n1 = the number of distinct operators that appear in a
program n2 = the number of distinct operands that appear
in a program N1 = the total number of operator
occurrences.
N2 = the total number of operand
occurrence. Overall program length N can
be computed:

N = n1 log2 n1 + n2 log2 n2 V = N log2(n1+ n2)

Department of CSE Page 13 of 14

METRIC FOR TESTING

n1 = the number of distinct operators that appear in a program
n2 = the number of distinct operands that appear in a program
N1 = the total number of operator occurrences.
N2 = the total number of operand
occurrence. Program Level and Effort
PL = 1/[(n1 / 2) x (N2 / n2

l)] e = V/PL

METRICS FOR MAINTENANCE

Mt = the number of modules in the current release
Fc = the number of modules in the current release that have been
changed Fa = the number of modules in the current release that have
been added.
Fd = the number of modules from the preceding release that were deleted in the

current release

The Software Maturity Index, SMI, is defined as:
SMI = [Mt–(Fc + Fa +Fd)/ Mt]

Metrics for Process And Product

Software Measurement:
Software measurement can be
categorized as
1)Direct Measure and
2)Indirect Measure

Metrics for Process And
Product Direct
Measurement

Direct measure of software process include cost and effort
Direct measure of product include lines of code, Execution speed, memory size, defects per

reporting time period.
Indirect Measurement
Indirect measure examines the quality of software product itself(e.g. :-

Functionality, complexity, efficiency, reliability and maintainability)

Reasons for measurement
To gain baseline for comparison with future

assessment To determine status with respect to plan
To predict the size, cost and duration estimate
To improve the product quality and process improvement

Department of CSE Page 14 of 14

Software Measurement

The metrics in software Measurement
are Size oriented metrics
Function oriented
metrics Object
oriented metrics
Web based application metric

Size Oriented Metrics

It totally concerned with the measurement of software.
A software company maintains a simple record for calculating the size of the
software. It includes LOC, Effort,$$,PP document,Error,Defect ,People.

Function oriented metrics

Measures the functionality derived by the application
The most widely used function oriented metric is Function
point Function point is independent of programming language
Measures functionality from user point of view

Object oriented metric

Relevant for object oriented
programming Based on the following

Number of scenarios (Similar to use cases)
Number of key classesNumber of support
classes Number of average support class per
key class Number of subsystem

Web based application metric

Metrics related to web based application measure the following
1.Number of static pages(NSP)
2. Number of dynamic pages(NDP)

Customization(C)=NSP/NSP+NDP C should approach 1

MetricsforSoftware Quality
Measuring Software Quality
1.Correctness=defects/KLOC

2.Maintainability=MTTC(Mean-time to

change) 3.Integrity=Sigma[1-(threat(1-security))]

Threat : Probability that an attack of specific type will occur within a given time

Security : Probability that an attack of a specific type will be repelled Metrics for

Software Quality Usability: Ease of use

Defect Removal Efficiency(DRE) DRE=E/(E+D)

E is the no. of errors found before delivery and D is no. of defects reported after
delivery Ideal value of DRE is 1

	Testing Strategies
	A strategic Approach for Software testing
	Testing Strategy
	Test Strategies for Conventional Software:
	Spiral Representation of Testing for Conventional Software
	Testing Tactics:
	Black box testing
	White Box testing
	The Art of Debugging
	ISO 9126 Quality Factors
	Product metrics
	Product Metrics for analysis, Design, Test and maintenance
	Product metrics for the Analysis model
	Product metrics for the Analysis model (1)
	Metrics for Design Model
	METRIC FOR TESTING
	METRICS FOR MAINTENANCE
	Metrics for Process And Product
	Software Measurement
	Size Oriented Metrics
	Function oriented metrics
	Object oriented metric
	Web based application metric

